Equity versus Bail-in Debt in Banking: An Agency Perspective

Caterina Mendicino Kalin Nikolov (ECB) (ECB)

> Javier Suarez (CEMFI)

Workshop on Financial Stability CEMFI, Madrid, 13 May 2016

Introduction

- Capital deficits revealed during the crisis have led to unprecedented reinforcement in banks' loss-absorbing capacity
 - Basel III increases minimum Tier 1 capital requirement from 4% of RWA to 6% (since 2015) and 8.5% (since 2019)
 - FSB prescribes Total Loss-Absorbing Capacity (TLAC) of at least 16% (since 2019) and 18% (since 2022)
- Policy-makers expect a significant fraction of TLAC to consist on liabilities other than equity, e.g. bail-in debt
- Their intention is (i) to enhance the credibility of the commitment not to bail-out the banks, and (ii) to increase market discipline
- Academic literature has paid some attention to (going-concern) coco bonds but almost no attention to (gone-concern) bail-in debt

- Double-decker model of the determinants of the optimal level and composition of banks' loss-absorbing liabilities
 - 1. Buffer size determinants:
 - Insured deposits provide liquidity services to their holders
 [Source of value / cheap funding source]
 - But defaulting on them causes differential default costs
 [Bankruptcy cost or, perhaps, excess cost of public funds]
 - 2. Buffer composition determinants

To start with, equity & bail-in debt are equally good regarding buffer-size trade-off, but differ when dealing with agency problems

- a) Risk shifting: equity works better (Jensen-Meckling 1976; Stiglitz-Weiss 1981; Repullo 2004)
- b) Managerial effort / private benefit taking: debt works better (Innes 1990)

- Key results
 - 1. Insured deposits imply need for loss absorbency requirements since bail-out subsidy makes banks tempted to operate without buffers
 - 2. Trade-offs in the model imply the existence of interior solutions:
 - For the level & composition of TLAC that maximize net social surplus generated by banks
 - For the composition of TLAC that maximizes bank owners' value (if only subject to an overall TLAC requirement)
 - 3. Under the current calibration:
 - Optimal total buffer size is in line with current regulations (pre-crisis levels were too low)
 - Optimal composition includes more bail-in debt than current regulatory proposals

Literature review

 Policy proposals on contingent convertibles (Flannery 2005), capital insurance (Kashyap-Rajan-Stein 2008) or bail-in debt (French-et-al 2010)

[Prepackaged recapitalization reduces incidence of bail-outs, ex post debt overhang problems & negative ex ante incentive effects]

- Most academic discussion centers on contingent convertibles: Choice of triggers (McDonald 2013), conversion rates (Pennacchi-Vermaelen-Wolff 2014), multiple equilibria (Sundaresan-Wang 2015), risk shifting (Pennacchi 2010; Martynova-Perotti 2014)
- Typical approach: adding ad hoc amount of cocos to given capital structure...

Instead, we look at bail-in debt and address capital structure & optimal regulation problems altogether

Presentation outline

- 1. Model details
- 2. Calibration
- 3. Single-friction case: Risk shifting
- 4. Single-friction case: Private benefits
- 5. Full model
- 6. Comparison with current regulation

Model details

- Simple static setup (t = 0, 1)
- Risk-neutral agents with discount factor β
- A *bank* tightly controlled by penniless *insiders*

Invests at t = 0 in one unit of assets that at t = 1 yield

$$\tilde{R}_i = (1 - \Delta - h(\varepsilon))R_A \exp(\sigma_i z - \sigma_i^2/2),$$

where

 $z \sim N(0, 1)$: idiosyncratic bank-performance shock i = 0, 1: dichotomic risk state, with $\sigma_0 < \sigma_1$ Δ : insiders' unobservable private benefit taking decision ε : insiders' unobservable risk shifting decision (=Pr(*i*=1)) $h(\varepsilon)$: increasing and convex "cost" of risk shifting • Insiders derive utility from final consumption and private benefits

$$U = \beta c + g\left(\Delta\right)$$

- Funding is raised among deep-pocketed *outside investors*:
 - Insured deposits 1– χ – ϕ pay interest rate R_D +liquidity yield ψ
 - Bail-in debt χ promises gross interest rate R_B
 - $-\operatorname{Common}$ equity $\phi,$ of which fraction γ is retained by insiders
- Insolvency occurs if the bank defaults on deposits \rightarrow losses to DIA are $\widetilde{DI} = R_D (1-\chi-\phi) - (1-\mu)\tilde{R}$ (μ : asset repossession cost)
- Haircuts on bail-in debt imply no deadweight cost (later relaxed)
- Regulation imposes minimum capital requirement, $\phi \ge \overline{\phi}$, and minimum TLAC requirement, $\phi + \chi \ge \overline{\tau} \ge \overline{\phi}$

The bank's capital structure problem

At t = 0 overarching contract fixes ϕ , χ , γ , R_B , R_D and, implicitly, insiders' subsequent private choices of Δ and ε

$$\begin{aligned} \max_{\phi,\chi,\gamma,R_B,\Delta,\varepsilon} \ \gamma E + g(\Delta) \\ \text{s.t.:} & (1-\gamma) E \ge \phi & [PC^E] \\ J - E \ge \chi & [PC^B] \\ \Delta = \arg\max_{\Delta} [\gamma E + g(\Delta)] & [IC^{\Delta}] \\ \varepsilon = \arg\max_{\varepsilon} [\gamma E + g(\Delta)] & [IC^{\varepsilon}] \\ \phi \geqslant \overline{\phi} & [CR] \\ \phi + \chi \geqslant \overline{\tau} & [TLAC] \end{aligned}$$

where

E: overall value of equity at t = 0

J: joint value of equity & bail-in debt (\Rightarrow bail-in debt is worth J-E)

[Full insurance
$$\Rightarrow R_D = 1/\beta - \psi$$
]

Black-Scholes type formulas for E and J

Conditional on each risk state, gross asset returns are log-normal...

$$E = \beta \sum_{i=0,1} \varepsilon_i \left[\left(1 - \Delta - h(\varepsilon) \right) R_A F(s_i) - BF(s_i - \sigma_i) \right]$$

$$J = \beta \sum_{i=0,1} \varepsilon_i \left[\left(1 - \Delta - h\left(\varepsilon\right) \right) R_A F(w_i) - R_D \left(1 - \phi - \chi \right) F\left(w_i - \sigma_i \right) \right]$$

where
$$\begin{split} B &= R_D(1-\phi-\chi) + R_B\chi\\ s_i &= \frac{1}{\sigma_i} \left[\ln(1-\Delta-h\left(\varepsilon\right)) + \ln R_A - \ln B + \sigma_i^2/2 \right]\\ w_i &= \frac{1}{\sigma_i} \left[\ln(1-\Delta-h\left(\varepsilon\right)) + \ln R_A - \ln R_D - \ln\left(1-\phi-\chi\right) + \sigma_i^2/2 \right]\\ F(\cdot) \colon \text{CDF of } N(0,1) \end{split}$$

Other formulas

• Cost of the deposit insurance

$$DI = \beta \sum_{i=0,1} \varepsilon_i \left[R_D \left(1 - \phi - \chi \right) \left(1 - F \left(w_i - \sigma_i \right) \right) - \left(1 - \mu \right) \left(1 - \Delta - h \left(\varepsilon \right) \right) R_A \left(1 - F(w_i) \right) \right]$$

• Deadweight losses due to bankruptcy

$$DWL = \beta \mu \sum_{i=0,1} \varepsilon_i \left(1 - \Delta - h(\varepsilon)\right) R_A \left(1 - F(w_i)\right).$$

• Net social surplus generated by the bank

$$W = U - DI$$

Calibration

• Functional forms

$$g\left(\Delta\right) = g_1 \Delta^{g_2} - g_3 \Delta$$

$$h\left(\varepsilon\right) = \frac{\zeta}{2}\varepsilon^{2}$$

with
$$g_1 \ge 0$$
, $0 < g_2 < 1$, $g_3 \ge g_1 g_2$, $\zeta > 0$

- Main purpose:
 - Illustrate key qualitative properties to the model
 - Yet baseline parameterization empirically plausible

$$\Rightarrow$$
 Table 1 (one period = one year)

Table 1: Baseline parameter values

Investors' discount factor	β	0.98	risk-free rate: 2%
Gross return on bank assets (if $\Delta = \varepsilon = 0$)	R_A	1.0278	maximum E(intermediation margin): 150bp
Private benefit level parameter	g_1	0.0062	insiders' U (including PB): 1.37%
Private benefit elasticity parameter	g_2	0.25	inside ownership: 23.9%, see [1] & [2]
Private benefit extra curvature parameter	g_3	0.025	Just enough to avoid corner solutions
Cost of risk shifting parameter	ζ	0.44	Pr(risky state) = 5% (< freq recessions)
Deposits' liquidity convenience yield	ψ	0.0072	Krishnamurthy-Vising-Jorgenssen 2012
Deadweight loss from bank default	μ	0.15	Bennet-Unal 2014 (FDIC resolutions 86-07)
Asset risk in the safe state	σ_0	0.034	$\Pr(bank default) = 0.25\%$ in safe state
Asset risk in the risky state	σ_1	0.1075	$\Pr(bank default) = 20\%$ in risky state
Capital requirement	$ar{\phi}$	0.04	minimum Tier 1 in Basel II
TLAC requirement	$\overline{\tau}$	80.0	minimum Tier $1 + Tier 2$ in Basel II

Notes:

[1] Berger-Bonaccorsi 2006 (US banks, 1990-1995): Direct management ownership (including family) 9.3%. Plus institutional shareholders and other large shareholders 17.2%

[2] Caprio-Laeven-Levine 2007 (244 banks from 44 countries): 26%

Intermediation margin= $R_A - 1/\beta + \psi$

Table 2:	Baseline	results	(%)	
----------	----------	---------	-----	--

Common equity as % of assets	ϕ	4.0
Bail-in debt as % of assets	χ	4.0
Insider equity as $\%$ of total equity	γ	23.9
Fraction of asset returns lost due to PB taking	Δ	0.12
Probability of the risky state realizing	${\mathcal E}$	5.0
Bank default probability in the safe state	P^0	0.25
Bank default probability in the risky state	P^1	20.0
Deposit insurance subsidy as $\%$ of assets	DI	0.22
Deadweight default losses as $\%$ of assets	DWL	0.16
Private value of the bank as $\%$ of assets	U	1.37
Social value of the bank as $\%$ of assets	W	1.15

- Decomposition of insiders' gains: $\gamma E = \bar{\phi} \times \gamma/(1 \gamma) = 1.26\%$, PB=0.11%
- Agency costs: 0.12% due to PB & 0.055% due to risk-shifting
- DI costs are 0.22% of total bank assets and realize mostly in risky times (3.4%) [Laeven-Valencia' s crises *DI* is 2.1% (advanced economies) to 12.7% (all economies)]

Single-friction case: Risk shifting

Assume Δ is fully contractible. We explore changes in $\overline{\phi}$ & $\overline{\tau}$

					<u> </u>					•)	
	ϕ	χ	γ	Δ	ε	P^0	P^1	DI	DWL	U	W
Baseline regime*	8.00	0.00	14.6	0.02	2.3	0.22	19.7	0.11	0.09	1.44	1.33
$\bar{\phi} = \overline{\tau} = 0$	0.00	0.00	100	0.06	9.7	32.89	46.4	5.94	4.78	2.89	-3.05
$\bar{\phi} = \overline{\tau} = 0.08$	8.00	0.00	14.6	0.02	2.3	0.22	19.7	0.11	0.09	1.44	1.33
$\bar{\phi}$ =0, $\overline{\tau}$ =0.08	8.00	0.00	14.6	0.02	2.3	0.22	19.7	0.11	0.09	1.44	1.33
$\bar{\phi}$ =0, $\overline{\tau}$ =0.12	12.00	0.00	9.98	0.02	1.0	0.00	10.3	0.02	0.01	1.40	1.38
Optimal regime**	12.00	0.00	9.98	0.02	1.0	0.00	10.3	0.02	0.01	1.40	1.38

Table 3: Comparative statics of the risk shifting model (%)

* In the baseline regime $(\bar{\phi}, \bar{\tau}) = (0.04, 0.08)$. ** In the optimal regime $(\bar{\phi}, \bar{\tau}) = (0.12, 0)$

- Row 1. Baseline requirements. PB taking is lower, PDs are lower, W is higher. Bank voluntarily makes $\phi = \overline{\tau} = 0.08$ (all TLAC is equity)
- Row 2. No requirements \Rightarrow maximum leverage, large PDs, large risk taking, W < 0
- Rows 3-5. Equity dominates bail-in debt. Lower PDs, lower risk taking
- Row 6. Optimal regime involves $\max(\bar{\phi}, \bar{\tau}) = 12\%$; almost zero PD in safe state

Single-friction case: Private benefits

We fix ε to exogenous value (5% as in baseline)

 P^0 P^1 DIDWLW ϕ Δ IJ ε γ χ Baseline regime* 4.00 24.8 5.0 0.21 0.16 4.00 0.11 0.24 19.9 1.43 1.21 $\bar{\phi} = \bar{\tau} = 0$ 0.03 5.0 34.7 47.0 6.03 0.00 0.00 100 4.98 2.39 -3.64 $\phi = \overline{\tau} = 0.08$ 8.00 0.00 13.2 0.21 5.0 0.26 20.2 0.22 1.34 1.12 0.16 0.00 8.00 $\phi = 0.\overline{\tau} = 0.08$ 100 0.05 5.0 0.22 19.8 0.21 1.47 0.15 1.26 $\phi = 0.\overline{\tau} = 0.12$ 0.00 12.0 100 0.05 5.0 0.00 10.3 0.09 0.06 1.41 1.32 Optimal regime** 0.00 15.5 100 0.05 5.0 0.00 5.04 0.04 0.03 1.37 1.33

Table 4: Comparative statics of the private benefits model (%)

* In the baseline regime $(\overline{\phi}, \overline{\tau}) = (0.04, 0.08)$. ** In the optimal regime $(\overline{\phi}, \overline{\tau}) = (0, 0.155)$.

- Row 1. Baseline requirements. Similar to full model.
- Row 2. No requirements \Rightarrow maximum leverage, large PDs; low PB taking; W < 0
- Rows 3-5. Outside bail-in debt dominates outside equity (=less skin in the game). Innes 1990
- Row 6. Optimal regime involves $\overline{\tau}$ only (15.5%); again almost zero PD in safe state

Full model

Combines intuitions from each of the special cases

	ϕ	χ	γ	Δ	ε	P^0	P^1	DI	DWL	U	W			
Baseline regime*	4.00	4.00	23.9	0.12	5.0	0.25	20.0	0.22	0.16	1.37	1.15			
$\bar{\phi} = \overline{\tau} = 0$	0.00	0.00	100	0.03	10.2	37.2	47.8	6.68	5.39	2.39	-4.28			
$\bar{\phi}$ =0.08, $\bar{\tau}$ =0.08	8.00	0.00	12.7	0.22	2.4	0.27	20.2	0.13	0.10	1.30	1.17			
$\bar{\phi}$ =0.12, $\bar{\tau}$ =0.12	12.0	0.00	7.36	0.39	1.1	0.00	10.9	0.02	0.01	1.10	1.08			
$\bar{\phi}=0.0, \bar{\tau}=0.08$	3.56	4.44	26.2	0.10	5.5	0.25	20.0	0.23	0.17	1.37	1.14			
$\bar{\phi}$ =0.0, $\bar{\tau}$ =0.12	4.05	7.94	22.7	0.12	5.0	0.00	10.5	0.09	0.06	1.30	1.21			
Optimal regime **	5.10	8.32	18.5	0.15	4.1	0.00	8.04	0.05	0.04	1.28	1.22			

 Table 5: Comparative statics of the full model (%)

* In the baseline regime $(\bar{\phi}, \bar{\tau}) = (0.04, 0.08)$. ** In the optimal regime $(\bar{\phi}, \bar{\tau}) = (0.051, 0.134)$

- Setting a very high capital requirement is not the best solution
- Optimal regime involves differentiated capital (5.1%) & TLAC requirements (13.4%)
- Significant risk shifting ($\varepsilon = 0.041$) & bank failure risk in the risky state (8%)
- Row 5 shows that even with $\overline{\phi} = 0$, banks may want to set $\phi > 0$ (market discipline effect)

How relevant is the capital requirement?

Table 6 examines the impact of fixing $\bar{\phi}=0$

Table 6: Capital requirements are needed at the optimum (%) P^0 $\overline{P^1}$ DIDWL Λ ε WTI ϕ χ γ Optimal regime* 5.10 8.32 18.5 0.15 4.1 0.00 8.04 0.05 0.04 1.28 1.22 $\phi=0.0, \overline{\tau}=0.134$ 4.15 9.25 22.0 0.13 4.9 0.00 8.06 0.07 0.05 1.28 1.22 In the optimal regime $(\overline{\phi}, \overline{\tau}) = (0.051, 0.134)$

- Banks still choose $\phi > 0$
- Qualitatively, PB taking improves and RS worsens; quantitatively the impact is quite small

Optimal regulation without bail-in debt

Table 7 examines the impact of fixing $\chi=0$ (or $\overline{\phi}=\overline{\tau}$)

Table 7: Optimal regulation without bail-in debt (%) Optimal regimes ϕ χ γ Δ ε P^0 P^1 DI DWL U W Unrestricted* 5.10 8.32 18.5 0.15 4.1 0.00 8.04 0.05 0.04 1.28 1.22											
Optimal regimes	ϕ	χ	γ	Δ	${\mathcal E}$	P^0	P^1	DI	DWL	U	W
Unrestricted*	5.10	8.32	18.5	0.15	4.1	0.00	8.04	0.05	0.04	1.28	1.22
Restricted (χ =0)**	8.65	0.00	11.6	0.24	2.1	0.14	18.5	0.09	0.07	1.27	1.18
$(\overline{\phi}, \overline{\tau}) = (0.051, 0.134). ** (\overline{\phi}, \overline{\tau}) = (0.087, 0.087).$											

- Less risk shifting & more private benefit taking
- Lower TLAC; more likely bank failure; small welfare loss

Comparison with current regulation

- Basel III imposes a minimum Tier 1 capital requirement of 8.5% (once the capital conservation buffer gets fully loaded in 2019)
- FSB prescribes minimum TLAC of 16% (by 2019) & 18% (by 2022)

Our results point to slightly lower levels of TLAC and a composition less tilted towards equity

Which additional ingredients would allow us to reconcile the implications of the model with current regulatory prescriptions? • We explore two:

- External social cost of bank failure μ^S

– Bankruptcy cost if bail-in debt is not paid back fully μ^T

 Table 8: Optimal policy under extended parameterizations (%)

	ϕ	χ	γ	Δ	ε	P^0	P^1	DI^*	DWL	U	W
$\mu^S = \mu^T = 0$	5.10	8.32	18.5	0.15	4.1	0.00	8.04	0.05	0.04	1.28	1.22
$\mu^{S}\!=\!\!0.3, \mu^{T}\!=\!\!0$	4.80	14.8	18.6	0.15	4.4	0.00	1.84	0.03	0.01	1.22	1.19
$\mu^{S}=0, \mu^{T}=0.075$	8.80	1.30	10.8	0.26	2.1	0.03	14.8	0.06	0.07	1.20	1.14
μ^{S} =0.3, μ^{T} =0.075	8.80	6.20	10.2	0.28	2.1	0.03	5.89	0.05	0.05	1.14	1.09

* DI now also includes the social cost of bank failure, if present.

- Adding just μ^S , rises $\overline{\tau}$ but lowers $\overline{\phi}$. Impact of $\overline{\tau}$ on profitability worsens incentives and requires lowering $\overline{\phi}$ to gain skin-in-the-game
- Adding just μ^T , increases cost of bail-in debt, leading to $\uparrow \overline{\phi}$ and $\downarrow \overline{\tau}$ (= much less bail-in debt); RS falls and PB taking increases
- Adding both μ^S and $\mu^T \Rightarrow$ level & composition of TLAC similar to current regulations

Conclusions

- Increase in CRs & revision of regulation regarding other components of TLAC are central aspects of post-crisis regulation
- We build a banking model in the spirit of Merton (1977) and insert in it a number of frictions, including two relevant agency problems (risk shifting & private benefit taking)
 - Deposits are cheap due to deposit insurance & the liquidity services that they provide to their holders
 - However, defaulting on them produces large social deadweight costs, providing a role for liabilities with loss-absorbing capability
- In our model equity and bail-in debt work similarly as loss absorbers but have very different effects on insiders' incentives

- Equity is superior when dealing with RS, while bail-in debt is superior when dealing with PB taking \Rightarrow optimal composition
- Under our calibration, the optimal capital and overall TLAC requirements are 5.1% and 13.4% respectively

[Once overall buffers are large enough, PB taking becomes a more serious threat to the social value of the bank than RS]

- Some additional ingredients might bring our normative prescriptions closer to current policy proposals
 - The optimal capital requirement grows quite a bit if writing off bail-in debt also implies deadweight costs
 - When such cost gets combined with an external cost of bank failure, our prescriptions become very similar to current regulation

ADDITIONAL RESULTS

Effects of TLAC requirement around optimal regime (F1)

- The fall in welfare when $\overline{\tau}$ increases above its socially optimal value happens relatively slowly
- Increasing $\overline{\tau}$ mainly reduces the unconditional bank failure probability (P_D)
- It also reduces profitability, implies greater dilution of insiders' incentives and worsens agency problems (quantitatively, by little)

Effects capital requirement around optimal regime (F2)

- The minimum CR becomes not binding once it is lower than 4.15%
- Rising $\overline{\phi}$ above the optimal value reduces RS at the cost of increasing PB taking...it marginally increases bank failure probabilities

Sensitivity to the asset return cost of risk shifting (ζ) (F3)

- ζ increases from 0.2 to 0.7, reducing relative importance of RS
- $\overline{\phi}$ (and the overall TLAC requirement $\overline{\tau}$) are decreasing in ζ
- Lower $\overline{\phi}$ allows insiders to retain more equity, PB taking falls, P_D increases

Sensitivity to the volatility of asset returns ($\sigma_0 \& \sigma_1$) (F4)

- $\sigma_0 \& \sigma_1$ get multiplied by factor σ (baseline =1)
- $(\overline{\phi},\overline{\tau})=(1\%,6\%)$ with $\sigma=0.5$ & $(\overline{\phi},\overline{\tau})=(7\%,17\%)$ with $\sigma=1.5$
- σ increases P_D & temptation to shift risk; rising $\overline{\phi}$ increases PB taking

Sensitivity to attractiveness of private benefit taking (g_1) (F5)

- Optimal regulatory response is to reduce portion of TLAC covered with equity
- Insiders' temptation to take more PB is not fully offset and RS also increases
- Regulatory response is to also increase $\overline{\tau}$, up to point that P_D actually falls

Sensitivity to bank default costs of (μ) (F6)

- Optimal $\overline{\tau}$ increases with μ , while $\overline{\phi}$ is barely sensitive to μ
- Optimal to sacrifice some liquidity provision to make banks safer
- This reduces profitability and increases need for skin-in-the-game, eventually at cost of RS

Sensitivity to the deposit convenience yield (ψ) (F7)

- Increasing ψ increases profitability (which improves incentives)
- This rises opportunity cost of TLAC requirement
- All in all, W increases but P_D increases slightly